
RESTful API

Seyed Mohammad Mousavi



2

RESTful API

REST: Representational State Transfer

API: Application Programming Interface



3

Interface

What is Interface?

Interface is Shared Boundary to exchange information.

This Exchange could be Between:
●  Different parts of a software
●  Two different software
●  Software and hardware
●  Software and human



4

API

API is the interface for exchange data between two software.

Why should we write an API for our Software?
●  To develop Multiple Front-Ends for our Back-End
●  To let others create their own program with our API
●  To let others use our API within their program



5

RESTful API

REST is a software architectural style that defines a set of 
constraints to be used for creating Web Services and it 
usually uses HTTP.

When HTTP is used, as is most common, the operations 
available are GET, HEAD, POST, PUT, PATCH, DELETE, 
CONNECT, OPTIONS and TRACE.

In a RESTful Web Services, requests made to a resource’s URI 
will elicit a payload  formatted in HTML, XML, JSON or other 
formats.



6

REST Properties

The constraints of the REST architectural affect the following 
properties:

●  Performance
●  Scalability
●  Simplicity of a uniform interface
●  Modifiability of components to meet changing needs
●  Portability of components



7

REST Constraints

Six guiding constraints define a RESTful system.

Theses constraints restrict the ways that the server can 
process and respond to client requests.

By operating within these constraints, the system gains 
desirable non-functional properties, such as performance, 
scalability and …

If a system violates any of the required constraints, it cannot 
be considered RESTful.



8

REST Constraints 1: Client–server 
architecture

The principle behind the client–server constraints is the 
separation of concerns. Separating the user interface 
concerns from the data storage concerns improves the 
portability of the user interfaces across multiple platforms.

It also improves scalability by simplifying the server 
components.

Perhaps most significant to the Web is that the separation 
allows the components to evolve independently



9

REST Constraints 2: Statelessness

Servers don’t hold the state.

State should be transferred to the server within the request.



10

REST Constraints 3: Cacheability

As on the World Wide Web, clients and intermediaries can 
cache responses.

Responses must, implicitly or explicitly, define themselves as 
either cacheable or non-cacheable.



11

REST Constraints 4: Layered System

A client cannot ordinarily tell whether it is connected directly 
to the end server, or to an intermediary along the way.

If a proxy or load balancer is placed between the client and 
server, it won't affect their communications and there won't 
be a need to update the client or server code.

Intermediary servers can improve system scalability by 
enabling load balancing and by providing shared caches.



12

REST Constraints 5: Code on Demand

This constraint is optional.

Servers can temporarily extend or customize the 
functionality of a client by transferring executable code: for 
example, client-side scripts such as JavaScript.



13

REST Constraints 6: Uniform Interface

The uniform interface constraint is fundamental to the 
design of any RESTful system.

It simplifies and decouples the architecture, which enables 
each part to evolve independently.

The four constraints for this uniform interface are:
●  Resource identification in requests
●  Resource manipulation through representations
●  Self-descriptive messages
●  Hypermedia as the engine of application state



14

Example

An endpoint URL: https://university.com/student

GET: List of all students
[

  {

    "id": 29,

    "name": "Mohammad",

  },

  {

    "id": 30,

    "name": "Mina",

  }

]

https://university.com/student


15

Example

An endpoint URL: https://university.com/student/29

GET: Information about student with id 29
[

  {

    "id": 29,

    "name": "Mohammad",

  }

]



16

Example

An endpoint URL: https://university.com/student

POST: Create a new student
[

  {

    "id": 31,

    "name": "Ahmad",

  }

]



17

What is GraphQL?

GraphQL is a query language for your API.

Instead of sending GET request and get all the information 
that the API will send you, you send a query and receive only 
what you asked for.

Why bother? We can just use the information we need.



18

GraphQL Example

Instead of sending a GET and receive all the information we 
can ask just for what we need, for example:
{ student {name} }

[

  {

    "name": "Mohammad",

  },

  {

    "name": "Mina",

  }

]



19

An alternate for GraphQL

We can create different URIs for different needs of 
information.

Is this method better than using GraphQL?



20

Why JSON?

We can use any format for transferring our data wit RESTful 
API, Why JSON?

Because it’s natively supported in JavaScript

But is it the best format we can use?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

